Reproducing AI models – a guideline

Image by Pete Linforth from Pixabay

2107.00821.pdf (arxiv.org)

Machine learning has been used in software engineering as a great tool for both research and development. The fact that we have access to TensorFlow, PyCharm, and other toolkits, provides almost endless possibilities. Combine that with the hundreds (if not thousands) of datasets from Zenodo and Co. and you can train a model for almost anything.

So far, so good, I would say. Problems (yes, there are always some problems) appear when we want to reproduce the results of others. Training a model on your own dataset and making it available is easy. Trusting such a model in a new context is not.

Imagine an example of an ML model trained on data from Company X. We have probably tuned the parameters a lot, so the model works great there, but does it work for Company Y? Most probably it will not. Well, it will work, but the performance of the predictions are not going to be great.

So, Google has partner up with academic partners to set up SIGMODELS, and TensorFlow garden, initiatives that are aimed at making ML models more portable, experiments more replicable, and all the other goodies.

In this paper, the authors provide a set of checks, which we can use to make the models more transparent, which is the first step towards reproducibility. In these guidelines, the authors advocate for reporting the models architecture, their input and output structure, building blocks, loss functions, etc.

Naturally, they also recommend to report metrics which were used to optimize the models, e.g. accuracy, F1-score, MCC or others. I know, these are probably essentials, but you would be surprised to see that many authors do not really report these metrics. If they are omitted, then how do we know if the metrics were just so poor that the authors omitted them (low performance of the model) or that they are not relevant (low relevance of the metrics – which is a good thing).

For now, these guidelines are only a draft, but I hope that they will become more mainstream. just like the emprical guidelines from ACM (GitHub – acmsigsoft/EmpiricalStandards: Empirical standards for conducting and evaluating research in software engineering).

Author: Miroslaw Staron

I’m professor in Software Engineering at IT faculty. I usually blog about interesting articles (for me) and my own reflections on the development of Software Engineering, AI, computer science and automotive software.