Who should fix this bug – again?

Image by Iván Tamás from Pixabay

Link to article: https://doi.org/10.1002/spe.2830

Assigning defects is a task that is not so much fun. Companies need to do that, but the persons who do it often change as the task is quite labor intensive and tiresome. There is, of course, a significant body of research about this and here is one example of it.

What is interesting in this article is that the authors use temporal data about the defect reports to assign teams. From the abstract: “In this article, we describe a new BA approach that relies on two key intuitions. Similar to traditional BA methods, our method constructs the expertise profile of project developers, based on the textual elements of the bugs they have fixed in the past; unlike traditional methods, however, our method considers only the programming keywords in these bug descriptions, relying on Stack Overflow as the vocabulary for these keywords. The second key intuition of our method is that recent expertise is more relevant than past expertise, which is why our method weighs the relevance of a developer’s expertise based on how recently they have fixed a bug with keywords similar to the bug at hand.

The method uses text similarity measures to match defects and performs better than existing methods based on the meta-parameters. What it means in practice is that the only thing that is needed is the actual defect description, or actually a failure report in order to make the predictions.

Very interesting work to apply, it seems that the entry level is not that high for new companies.

If a tool can automatically refactor our code – is it good or bad for us, programmers?

https://link-springer-com.ezproxy.ub.gu.se/article/10.1007/s10664-020-09826-7

Image by GimpWorkshop from Pixabay

Recently, I’ve read an article in Empirical Software Engineering about automated code refactoring. I must admit that I do refactoring quite seldom. It’s a tedious task and for the software that I write, quite unnecessary. My software is often a set of scripts to solve a specific task and then the key is to document it, not refactor. A good documentation helps me to understand what I did in that code and how it works. Yes, I know it sounds like a cliché, but that’s how it is for me. I’m switching tasks so often that I forget what the code was doing.

Nevertheless, I recognize the code that is nicely written, formatted and refactored. Therefore, I was on a lookout for a tool that could do something like that for me – suggest a refactoring that I could implement.

So, this is a paper that I found, which I would like to try out. It is a tool that was evaluated through interviews with designers and developers. Although they can recognize that the code was refactored, but they seemed to be happy about it. So, I’m off to try out the tool:)

Abstract: Refactoring is a maintenance activity that aims to improve design quality while preserving the behavior of a system. Several (semi)automated approaches have been proposed to support developers in this maintenance activity, based on the correction of anti-patterns, which are “poor” solutions to recurring design problems. However, little quantitative evidence exists about the impact of automatically refactored code on program comprehension, and in which context automated refactoring can be as effective as manual refactoring. Leveraging RePOR, an automated refactoring approach based on partial order reduction techniques, we performed an empirical study to investigate whether automated refactoring code structure affects the understandability of systems during comprehension tasks. (1) We surveyed 80 developers, asking them to identify from a set of 20 refactoring changes if they were generated by developers or by a tool, and to rate the refactoring changes according to their design quality; (2) we asked 30 developers to complete code comprehension tasks on 10 systems that were refactored by either a freelancer or an automated refactoring tool. To make comparison fair, for a subset of refactoring actions that introduce new code entities, only synthetic identifiers were presented to practitioners. We measured developers’ performance using the NASA task load index for their effort, the time that they spent performing the tasks, and their percentages of correct answers. Our findings, despite current technology limitations, show that it is reasonable to expect a refactoring tools to match developer code. Indeed, results show that for 3 out of the 5 anti-pattern types studied, developers could not recognize the origin of the refactoring (i.e., whether it was performed by a human or an automatic tool). We also observed that developers do not prefer human refactorings over automated refactorings, except when refactoring Blob classes; and that there is no statistically significant difference between the impact on code understandability of human refactorings and automated refactorings. We conclude that automated refactorings can be as effective as manual refactorings. However, for complex anti-patterns types like the Blob, the perceived quality achieved by developers is slightly higher.

PHANTOM – finding well engineered software projects, fast…

https://link-springer-com.ezproxy.ub.gu.se/article/10.1007%2Fs10664-020-09825-8

Image by 2427999 from Pixabay

I’ve worked with two great students – Peter and Joshua – who wanted to do something interesting. They developed a tool that could replicate a study from other researchers. However, they did it faster and with less data. We also managed to team up with Mirek from Poznan who improved the classification algorithm and asked his colleagues from new, industrial data.

And this is the outcome – a tool that can connect to a git repository and recognise whether your project is well engineered or not. It helps companies to understand whether their teams are working in a structured manner or ad-hoc.

The tool provides the possibility to assess whether a specific repository is in need for maintenance or not.

Abstract:

Context: Within the field of Mining Software Repositories, there are numerous methods employed to filter datasets in order to avoid analysing low-quality projects. Unfortunately, the existing filtering methods have not kept up with the growth of existing data sources, such as GitHub, and researchers often rely on quick and dirty techniques to curate datasets.

Objective: The objective of this study is to develop a method capable of filtering large quantities of software projects in a resource-efficient way.

Method: This study follows the Design Science Research (DSR) methodology. The proposed method, PHANTOM, extracts five measures from Git logs. Each measure is transformed into a time-series, which is represented as a feature vector for clustering using the k-means algorithm.

Results: Using the ground truth from a previous study, PHANTOM was shown to be able to rediscover the ground truth on the training dataset, and was able to identify “engineered” projects with up to 0.87 Precision and 0.94 Recall on the validation dataset. PHANTOM downloaded and processed the metadata of 1,786,601 GitHub repositories in 21.5 days using a single personal computer, which is over 33% faster than the previous study which used a computer cluster of 200 nodes. The possibility of applying the method outside of the open-source community was investigated by curating 100 repositories owned by two companies.

Conclusions: It is possible to use an unsupervised approach to identify engineered projects. PHANTOM was shown to be competitive compared to the existing supervised approaches while reducing the hardware requirements by two orders of magnitude.

Engineering AI systems – differences to engineering “other” software systems…

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9121629

Image by Free-Photos from Pixabay

Being a software engineer working with AI for a while, I noticed that the engineering of AI systems is different. Well, maybe not building the actual system, but the way in which the knowledge about quality, testing and maintenance differ.

In this article, IEEE Software’s Editor in Chief presents her view on the topic. The main point is that this engineering is both similar and different. This quote from the paper summarizes it nicely: “I argue that our existing design techniques will not only help us make progress in understanding how to design, deploy, and sustain the structure and behavior of AI-enabled systems, but they are also essential starting points. I suggest that what is different in AI engineering is, in essence, the quality attributes for which we need to design and analyze, not necessarily the design and engineering techniques we rely on. “

One of the differences is the process of development. It is not aligned with the non-ML systems, e.g. in terms of training, testing, maintenance. ML systems are data-centric and this needs to be reflected in the AI engineering processes.

Ipek Ozkaya discusses the following misconceptions about the differences:

  • We can specify systems – both AI and non-AI systems cannot really be fully specified,
  • System correctness can be verified – we can never fully verify systems, neither AI-based on non-AI based (e.g. due to complexity),
  • We can avoid hidden dependencies,
  • We can manage system change propagation,
  • Frameworks do it all,
  • We can build reliable systems from unreliable and unpredictable subcomponents

I recommend this article to get a quick overview of the gist of the differences and misconceptions.

Problems with engineering AI systems

Image by Free-Photos from Pixabay 

https://link-springer-com.ezproxy.ub.gu.se/article/10.1007/s10994-020-05872-w

Engineering machine learning systems is much more than train-evaluate cycles. It means that we need to systematically integrate these ML systems with the rest of the component. We need to build safety-cages to ensure that the decisions are not out-of-bounds and we need to make sure that we can maintain these systems.

In this paper, the authors studied an example of automated driving vehicles, not fully autonomous (but still) and shown the challenges that we need to solve before AI and ML becomes one of our “fellow drivers” on the roads.

The findings of the paper show that it’s not going to happen soon. As the authors say in the abstract: “Our results show that machine learning models are characterized by a lack of requirements specification, lack of design specification, lack of interpretability, and lack of robustness. We also perform a gap analysis on a conventional system quality standard SQuaRE with the characteristics of machine learning models to study quality models for machine learning systems. We find that a lack of requirements specification and lack of robustness have the greatest impact on conventional quality models. “

The authors provide a process for machine learning models as part of safety critical software, where the designing of the system and its real-scenario validation are a bit more apart than traditionally.

What I really like about the paper is the gap analysis of ML systems and ISO 25000 quality model. For example, as shown in this table: https://link-springer-com.ezproxy.ub.gu.se/article/10.1007/s10994-020-05872-w/tables/2

What to discuss about Deep Learning? – an EMSE article review

Image by Bilderandi from Pixabay 

A study about what the developers discuss regarding Deep Learning and whether this differs across different frameworks is an interesting summer discussion topic: https://doi-org.ezproxy.ub.gu.se/10.1007/s10664-020-09819-6

The paper reviews the comments of developers who comment and/or post questions about three deep learning frameworks: Theano, Tensorflow and PyTorch. I’ve got interested in the paper because I wanted to see whether the communities using these frameworks differ. Myself, I’ve got introduced to Tensorflow a while back and keps using it. Since I’m not an ML researcher, the framework does not really matter for me, but I still would like to know whether I should read upon some new framework during the summer.

The observations quoted from the abstract:

1) a wide range of topics that are discussed about the three deep learning frameworks on both platforms, and the most popular workflow stages are Model Training and Preliminary Preparation.

2) the topic distributions at the workflow level and topic category level on Tensorflow and PyTorch are always similar while the topic distribution pattern on Theano is quite different. In addition, the topic trends at the workflow level and topic category level of the three deep learning frameworks are quite different.

3) the topics at the workflow level show different trends across the two platforms. e.g., the trend of the Preliminary Preparation stage topic on Stack Overflow comes to be relatively stable after 2016, while the trend of it on GitHub shows a stronger upward trend after 2016.

It’s interesting that the topics are roughly the same, but I’m a bit surprised that the topics are mostly about the data management/machine learning and not the frameworks themselves. This means that applications win over development of the frameworks – at least at the moment.

Emerging new field – DUO – Data mining and optimization (EMSE article)

Image by klickblick from Pixabay 

New sub-areas or fields within software engineering are not that common, but they come up once in a while. The authors of this article (https://doi-org.ezproxy.ub.gu.se/10.1007/s10664-020-09808-9, Better software analytics via “DUO”: Data mining algorithms using/used-by optimizers) argue that this is the case now.

In this article, the authors provide a view that data mining and building optimization models are done in tandem and that this is the new field. They show that the data mined from repositories influences optimization models and that the development of models influences data mining.

The authors make the following claims (quoted from the paper, references removed):

  • Claim1:For software engineering tasks, optimization and data mining are very similar. Hence, it is natural and simple to combine the two methods.
  • Claim2:For software engineering tasks. optimizers can greatly improve data miners. A data miner’s default tuners can lead to sub-optimal performance. Automatic optimizers can find tunings that dramatically improve that performance.
  • Claim3:For software engineering tasks, data miners can greatly improve optimization. If a data miner groups together related items, an optimizer can explore and report conclusions that are general across a set of solutions. Further, optimization for SE problems can be very slow. But if that optimization executes over the groupings found by a data miner, that inference can terminate orders of magnitude faster.
  • Claim4:For software engineering tasks, data mining without optimization is not recommended. Conclusions reached from an unoptimized data miner can be changed, sometimes even dramatically improved, by running the same tuned learner on the same data. Researchers in data mining should, therefore, consider adding an optimization step to their analysis.

These claims make a lot of sense and they are aligned with my observations. I recommend this article for everyone who is working at or developing a metric team or a data analysis/data science team.

Testing ML applications

Image by Gordon Johnson from Pixabay

Code: https://github.com/lawrence415610/Mtkeras

I’ve recently looked at the applications of different testing techniques for testing ML applications and got interested in the so called metamorphic testing. The idea is that we can check whether an output is within a specific range or set, which is called a metamorphic relation ( https://medium.com/trustableai/testing-ai-with-metamorphic-testing-61d690001f5c).

What is interesting about this paper is that it presents a framework for testing ML applications. I’ve not tried it yet, but I will as it seems very interesting to check how things work with this metamorphic testing and metamorphic relations. I’ve also interested in how to measure the quality of the software in this context.

https://www.researchgate.net/profile/Zhi_Quan_Zhou/publication/340487456_A_Testing_Tool_for_Machine_Learning_Applications/links/5e8c7ee14585150839c682b9/A-Testing-Tool-for-Machine-Learning-Applications.pdf

Machine learning for source code suggestion, completion

Image by StockSnap from Pixabay

https://www-sciencedirect-com.ezproxy.ub.gu.se/science/article/pii/S0950584920300616

This is a great paper demonstrating the use of NLP techniques for completion of software source code. It uses recurrent networks and can reduce the size of the vocabulary compared to previous approaches.

As the authors say: “The CodeGRU introduces a novel approach which can correctly capture the source code context by leveraging the token type information.”

I like the approach because it can extract the information that is important for the analysis of source code – what kind of token is analysed and how it is used.

Conclusions (quote from the abstract): “Our experiment confirms that the source code’s contextual information can be vital and can help improve the software language models. The extensive evaluation of CodeGRU shows that it outperforms the state-of-the-art models. The results further suggest that the proposed approach can help reduce the vocabulary size and is of practical use for software developers.”

I’m kind of keen to check this approach in our work. See if we can use this to improve the quality of source code.

Using machine learning to understand the quality of requirements

Image by Hans Braxmeier from Pixabay

https://link-springer-com.ezproxy.ub.gu.se/article/10.1007%2Fs11219-020-09511-4

Working with software requirements and metrics is an important part of research in modern software companies. Although many of the companies are Agile or post-Agile, claiming that they do not have requirements, they still capture user needs in textual forms. For example, they describe user stories, epic, use cases.

This paper is an interesting view on the software requirements quality assessment. Instead of just calculating metrics and creating quality models, they use machine learning to mimic the way in which experts judge what is a good requirement and what is not. They use quality functions, and several of them, to distinguish between the good and bad requirements. Using multiple functions, in a multidimensional space, allows to select groups of requirements that are separated by the other class – the figures in the paper show more how this works in practice.

The summary of the gist of the paper is actually presented best in the introduction (quote): “Summing up, we can compute a set of quantitative metrics of textual requirements, and through them, we can assess the quality of requirements. However, the risk of this approach is to build assessment methods and tools that are both arbitrary in the parameterization of metrics and rigid in the combination of metrics to evaluate the different properties. This is why we propose in this work to develop a flexible assessment method that can be adapted to different contexts, with a high degree of automation. The method consists basically in the emulation of the experts’ judgment on quality through artificial intelligence techniques: first, obtain the expert’s implicit quality function through machine learning, and, second, apply this function to automatically assess the quality of textual requirements.

Our approach to emulate the experts’ judgment, as explained later in detail, is based on well-known machine learning techniques: we have a computer tool learn from a previous human-made classification of requirements according to their quality. Therefore, our work’s intent is not to improve machine learning techniques, but rather to devise a novel application to the field of requirements quality assessment.”

I strongly recommend to read the paper as it provides very good methods to work with requirements quality in many modern organisations.